Simultaneous reduction of arsenic(V) and uranium(VI) by mackinawite: role of uranyl arsenate precipitate formation.

نویسندگان

  • Lyndsay D Troyer
  • Yuanzhi Tang
  • Thomas Borch
چکیده

Uranium (U) and arsenic (As) often occur together naturally and, as a result, can be co-contaminants at sites of uranium mining and processing, yet few studies have examined the simultaneous redox dynamics of U and As. This study examines the influence of arsenate (As(V)) on the reduction of uranyl (U(VI)) by the redox-active mineral mackinawite (FeS). As(V) was added to systems containing 47 or 470 μM U(VI) at concentrations ranging from 0 to 640 μM. In the absence of As(V), U was completely removed from solution and fully reduced to nano-uraninite (nano-UO2). While the addition of As(V) did not reduce U uptake, at As(V) concentrations above 320 μM, the reduction of U(VI) was limited due to the formation of a trögerite-like uranyl arsenate precipitate. The presence of U also significantly inhibited As(V) reduction. While less U(VI) reduction to nano-UO2 may take place in systems with high As(V) concentrations, formation of trögerite-like mineral phases may be an acceptable reclamation end point due to their high stability under oxic conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uranyl and arsenate cosorption on aluminum oxide surface

In this study, we examined the effects of simultaneous adsorption of aqueous arsenate and uranyl onto aluminum oxide over a range of pH and concentration conditions. Arsenate was used as a chemical analog for phosphate, and offers advantages for characterization via X-ray absorption spectroscopy. By combining batch experiments, speciation calculations, X-ray absorption spectroscopy, and X-ray d...

متن کامل

Uranium Biominerals Precipitated by an Environmental Isolate of Serratia under Anaerobic Conditions

Stimulating the microbially-mediated precipitation of uranium biominerals may be used to treat groundwater contamination at nuclear sites. The majority of studies to date have focussed on the reductive precipitation of uranium as U(IV) by U(VI)- and Fe(III)-reducing bacteria such as Geobacter and Shewanella species, although other mechanisms of uranium removal from solution can occur, including...

متن کامل

Abiotic reductive immobilization of U(VI) by biogenic mackinawite.

During subsurface bioremediation of uranium-contaminated sites, indigenous metal and sulfate-reducing bacteria may utilize a variety of electron acceptors, including ferric iron and sulfate that could lead to the formation of various biogenic minerals in situ. Sulfides, as well as structural and adsorbed Fe(II) associated with biogenic Fe(II)-sulfide phases, can potentially catalyze abiotic U(V...

متن کامل

Enhanced uranium sorption on aluminum oxide pretreated with arsenate. Part I: Batch uptake behavior.

We explored mechanisms for increasing U(VI) sorption by pretreating alumina surfaces with arsenate, which has a high affinity for binding with uranyl and is an analog for phosphate. Batch experiments were conducted at pH approximately 4 by pretreating a gamma-alumina surface with arsenate, followed by the addition of uranyl. Parallel experiments were conducted with different alumina loadings as...

متن کامل

Interactive of arsenate and phosphate on arsenic-induced oxidative stress in root of Isatis cappadocica Desv.

In present study, growth, arsenic accumulation, and antioxidant responses in root of Isatis cappadocica were investigated in response to application of arsenate and phosphate. Reduction in root dry weights was significant with 1200 µM arsenate and 5 µM phosphate treatments. Phosphate had a steady effect on root dry weight improvement, especially in high arsenate treatments ≥ 200 μM. As concentr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 48 24  شماره 

صفحات  -

تاریخ انتشار 2014